Theory for dynamic longitudinal dispersion in fractures and rivers with Poiseuille flow

نویسندگان

  • Lichun Wang
  • M. Bayani Cardenas
  • Wen Deng
  • Philip C. Bennett
چکیده

[1] We present a theory for dynamic longitudinal dispersion coefficient (D) for transport by Poiseuille flow, the foundation for models of many natural systems, such as in fractures or rivers. Our theory describes the mixing and spreading process from molecular diffusion, through anomalous transport, and until Taylor dispersion. D is a sixth order function of fracture aperture (b) or river width (W). The time (T) and length (L) scales that separate preasymptotic and asymptotic dispersive transport behavior are T = b/(4Dm), where Dm is the molecular diffusion coefficient, and L = b 4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Implicit Numerical Scheme for Pollutant and Heat Transport in a Plane-Poiseuille Flow

A sequential implicit numerical scheme is proposed for a system of partial differential equations defining the transport of heat and mass in the channel flow of a variable-viscosity fluid. By adopting the backward difference scheme for time derivative and the central difference scheme for the spatial derivatives, an implicit finite difference scheme is formulated. The variable-coefficient diffu...

متن کامل

مدل‌سازی عددی انتقال رسوب معلق غیرچسبنده در رودخانه‌ها(مطالعه موردی: رودخانه کرخه)

Rivers as a main sources of supplying water for urban areas, agriculture and industry, are very important. This point reveals the necessity of the control, improvement and solving the problems of rivers, especially all problems relating to water quality. In this study, transport of the suspended sediment is numerically modeled. The Saint-Venant hydrodynamic equations and also advection-dispersi...

متن کامل

Closed-form expression for the dynamic dispersion coefficient in Hagen-Poiseuille flow

We present an exact expression for the upscaled dynamic dispersion coefficient (D) for one-dimensional transport by Hagen-Poiseuille flow which is the basis for modeling transport in porous media idealized as capillary tubes. The theoretical model is validated by comparing the breakthrough curves (BTCs) from a 1D advection-dispersion model with dynamic D to that from direct numerical solutions ...

متن کامل

Effects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation

In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in...

متن کامل

Nonlocal Analysis of Longitudinal Dynamic Behavior of Nanobars with Surface Energy Effect

Due to considerable stored energy in surfaces of nano-scales in comparison with the stored energy in their bulk, considering the surface energy is necessary for the analysis of various behaviors of nano-scales for more precise design and manufacturing. In this article, the longitudinal dynamic behavior of nanobars in the presence of the surface energy parameters is studied. To this end, the lon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012